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Probabilistic solutions of generalised birth and death equations 
and applications to field theory 

M Serva 
Dipartimento di Fisica, Universita di Roma ‘La Sapienza’, Roma, Italy 

Received 1 May 1986 

Abstract. In this paper we give probabilistic solutions to the equations describing non- 
relativistic quantum ‘electrodynamical’ systems. 

These solutions involve, besides the usual diffusion processes, also birth and death 
processes corresponding to the ‘photon number’ variables. We state some inequalities and 
in particular we establish bounds to the ground-state energy of systems composed of a 
non-relativistic particle interacting with a field. The result is general and it is applied as 
an example to the polaron problem. 

1. Introduction 

In the last few years the overlap between quantum mechanics and the theory of 
stochastic processes has increased enormously. On the one side there have been 
successful attempts to give a stochastic description of some quantum phenomena and, 
on the other side, new probabilistic methods have been introduced both in the functional 
integral approach to quantum mechanics and in the quantisation procedure known as 
‘stochastic quantisation’. These different applications of stochastic processes are some- 
times related. 

Consider for example Nelson’s stochastic mechanics; it is a theory that gives a 
naive microphysical picture of systems described by the Schrodinger equation, but it 
turns out that the mathematical apparatus can be regarded as a probabilistic version 
of the Feynman path integral (Guerra 1981), in other words the ground-state process 
of Nelson’s stochastic mechanics solves the imaginary time Schrodinger equation. 

More recent papers have shown, on the one hand, that it is possible, utilising 
discrete processes, to give a stochastic description of spinning particles (De Angelis 
and Jona-Lasinio 1982) and of relativistic particles (De Angelis et a1 1984) and, on 
the other hand, that Feynman-Kac formula could be extended to Pauli (De Angelis 
et a1 1983) and to Dirac equations (Blanchard et a1 1984) 

Even in this case it has been pointed out that the processes associated with stochastic 
models were closely related to the processes utilised to obtain the generalised Feynman- 
Kac formulae. 

It is natural at this point to follow this line and to try to investigate other possible 
relations between stochastic mechanics models and the functional integral approach 
to quantum mechanics. 

Here we explore the possibility of giving probabilistic solutions to field equations 
in the occupation number representation. The starting point is a recent paper (Cini 
and Serva 1984) where we gave a stochastic description of a simple field model based 
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on the use of a birth and death type variable representing the number of photons. We 
use the process associated to the ground state of this physical model to obtain an 
analogue of the Feynman-Kac formula, where the paths of Wiener variables associated 
to the positions of the field’s oscillators are replaced by paths of discrete variables 
representing the number of ‘photons’. 

The paper is organised as follows. In § 2 we introduce the process treating the 
simple case of a time-independent forced harmonic oscillator. We consider the associ- 
ated Schrodinger equation in the occupation number representation and, after a 
canonical transformation of the wavefunction, we obtain the solution as an expectation 
with respect to a birth and death process. In § 3 we use this result to treat the more 
complicated case of a field in interaction with a particle. Here we take the expectation 
both with respect to birth and death variables associated to field oscillators, and with 
respect to a Wiener variable associated to the particle position. We then state an 
inequality that permits us to give a lower bound for the ground-state energy of the 
system. In 0 4 we eliminate the particle variables in order to be left only with oscillator 
variables. Moreover we state other inequalities and we find an upper bound for the 
ground-state energy. The bounds cover a large number of different physical field- 
particle interactions; as an example they are tested for the well known polaron 
interaction. 

2. The forced harmonic oscillator 

The method we want to introduce finds its natural application in field theory. It is 
therefore instructive to start with the simple case of the one-dimensional forced 
harmonic oscillator. The Hamiltonian can be written 

H = ~ ( p 2 + ~ 2 q 2 ) + ~ ( 2 ~ ) 1 ’ 2 A q  (2.1) 
where q and p are the position and the momentum operators of the oscillators and A 
is a real constant. 

Having defined 

it is easy to realise that the Schrodinger equation 

(2.3) 

can be rewritten in the form 

(2.4) i - +( n, t )  = ( n  +$)U+(  n, t )  + Aw ( n  + l)”*+( n + 1, t )  + Aw (n)”’+( n - 1, t ) 

where +(n, t )  =(nl+,) is the probability amplitude of finding the system in a state with 
n ‘photons’. 

Let us perform the canonical substitution +( n, t )  + +( n, t )  = +( n, t)/R(n, t )  where 
R(n, t )  is the ground-state solution given by 

a 
a t  

(2.5) 
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with Eo= - A 2 w + f w .  For the new function + ( n ,  t )  equation (2.4) can be rewritten as 

(2.6) 

The above relation has (after an analytical continuation in the time variable) the 
structure of a backward Kolmogorov equation for a discontinuous Markow process 
in the state space of positive integers. The intuitive interpretation of the process is 
clear; we have a 'source' that emits 'photons' with intensity A2w independent of the 
number already emitted or absorbed and absorbs with intensity wn proportional to 
the number of 'photons' present. The transition probability p (  m, t ;  n, t ' )  that the system 
goes from n to m in the time t - t '  has been found in a previous paper ( C h i  and Serva 
1984) and is given by 

a 
a t  

i - 4(  n, t )  = ( n  + ,I2)@( n, t )  - A2w4(  n + 1, t )  - nw4(  n - 1, t ) .  

p (  m, I ;  n, t ' )  = exp{ A *(exp[ -U ( t - t ')] - 1 )} ( * s " , m  ( ; n ) ( ; ) S e x P r - W t - r ' ) l  

x { 1 - exp[w( t - 1 - exp[-w( t - t ' ) ] } " - k ( A  *)"-*). (2.7) 

We are thus able to write the solution of (2.6) for imaginary time 
-.- 

where 4 0 ( n )  = 4 ( n ,  0). 

death process N,(r) associated to the probability (2.7) and satisfying N"(0) = n: 
Equation (2.8) can be rewritten as an expectation with respect to the birth and 

4(% t )  = u 4 0 ( N " ( t ) ) I .  (2.9) 
Performing the inverse canonical substitution we have 

tCl(n, t )  =a(% t)~[tClo(N,(t))la(N,(t), 0)l 

= exp[ ( A - i) w t IL0( Nn ( t )a ( Nn ( O ) ,  O ) /  a( Nn ( f ) , O )  I. (2.10) 

In this paper we will drop the contribution from the ground-state energy &J of the 
free harmonic oscillator. Formula (2.10) will be the starting point of our approach to 
field-particle interactions. 

3. Field-particle interaction 

We now consider a non-relativistic particle in interaction with a field. As a first step 
we specialise the field to be a single oscillator. We write the Hamiltonian of this system 
in the following form: 

(3.1) 
where a+ and a now refer to the oscillator, q is the position operator of the non- 
relativistic particle, p is the conjugate momentum and A ( q )  is a complex function of 
q. Having defined $(x ,  n, t )  = (x ,  nl+,) we have the Schrodinger equation 

H='  2a  + a w + f p * + A ( q ) w a + + A * ( q ) w a  

. a  a' 
a t  ax 

~ - t ~ l ( x , n , t ) = n w t ~ l ( x , n , t ) - f , ~ ~ ( x , n , t )  

+ A * ( x ) w ( n + l ) " ' ~ / ~ ( x ,  n + l ,  t ) + A ( x ) w & 4 ( x ,  n-1,  t ) .  (3.2) 
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The representation is mixed; in fact, $(x, n, t )  is the joint probability amplitude of 
finding n ‘photons’ and the particle in x. We want to give a probabilistic solution to 
this equation. First let us put h ( x )  in the usual form of field interactions: 

h ( x )  = 7 exp(ikx) (3.3) 
with 7 being complex number independent of x. Now let us define 

Then we perform the substitution $(x, n, t )  + 4(x ,  n, t )  = $(x, n, t ) / a ( x ,  n, t ) .  
The new function satisfies the equation (for imaginary time) 

(3.4) 

In this form we have a random field ikN,,( t )  which appears explicitly as a correction 
of the Laplacian. The solution of this equation is given by 

(3.6) 

The expectation is taken with respect to the Wiener process w,( t )  starting in x at time 
t = O  and the usual birth and death process N , , ( t ) .  We do not need to take particular 
care of the definition of the integral with respect to the Wiener process. We give a 
derivation of (3.6) in appendix 1. 

Finally the solution of (3.2), for an imaginary time, is 

$(x, n, 1 )  = exP(l77I2~t)~[$o(wx(r), N n ( t ) )  

We are now able to tackle the problem of finding the probabilistic solution for the 
equation of a system of a non-relativistic particle in interaction with a field that is a 
set of harmonic oscillators. We have the general Hamiltonian 

where x is the vector position of the non-relativistic particle, p is the conjugate 
momentum and a:, ak are the annihilation and creation operators for the ‘photon’ of 
momentum k and energy w k .  7 k  and wk are unspecified functions of k = Ikl (indeed, 
they may have a further dependence on other indices, but this does not produce any 
complications). 

The probability amplitude to find the system in x, fi at time t is $(x, fi, t )  where fi 
denotes the set of positive integers n k  representing the photon number of mode k. 

By a generalisation of (3 .7)  we have (as usual for imaginary time) 

(3.9) 
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The expectation is taken with respect to &':( t )  and wx( t )  where fit( t )  indicates the 
set of processes N k ( t )  starting in n k  at time t = O  and w , ( t )  is a three-dimensional 
Brownian motion. n(x, r?, t )  is defined by 

(3.10) 

To interpret (3.9) we have to remember that the intensities for each process N k ( t )  are 
w k  I q k  1' for emission and n k w k  for absorption respectively. 

The integral with respect to the Wiener variable can be integrated by parts 

lo' N k  ( r)d wx = ( Nk (3.11) 

and we obtain 

(3.13) 
\ k  / 

From this inequality we deduce that the lowest eigenvalue Eo of the Hamiltonian (3.8) 
is larger than the lowest eigenvalue Eh of the Hamiltonian H' which is responsible 
for the evolution of the right-hand side of (3.13). It is easy to check that 

(3.14) 

In fact, now, particle and oscillators are uncoupled so that the right-hand side of (3.13) 
is the solution of the Schrodinger equation associated to H' when the initial condition 

The minimum energy of the free particle is zero while the minimum energy of the 
is I$o(x, $ ) I .  
oscillators can be written utilising the results of § 2. We have finally 

(3.15) 

We point out that the Hamiltonian (3.8) is very general and we are able to cover many 
different physical interactions by assuming different k dependence of the functions 
q k  and O k .  

4. Elimination of the particle's variables 

One of the main successes of the probabilistic formulation of quantum mechanics lies 
in the possibility of partial elimination of variables of the system. For example, we 
could specialise the expressions (3.9) and (3.12) to the case for which in the initial 
and final state there are no 'photons' and then integrate with respect to all the measures 
of birth and death processes. 



440 M Serva 

In this case we are left with an expectation with respect to the Wiener process only. 
This possibility has already been explored with the usual techniques of path integration. 
We are now interested in the inverse procedure: we will eliminate the particle variables 
and then we try to extract information from the resulting expectation with respect to 
the ‘photons’ variables. 

We start by rewriting equation (3.9) with the assumption that the particle has a 
position x’ at the initial time. We have 

&(x, ii) = &( i i )S(X - x’) (4.1) 

and so 

Here the expression i & N k ( r ) k  appears as a time-dependent unspecified function so 
that we are able to calculate explicitly (4.3) 

(4.4) 

We can furthermore specialise (4.4) choosing x = x‘ the above expression turns into 

(4.5) 
which is a real positive expression, and it can be thought of as generated by a potential 
non-local in time that describes the interaction between ‘photons’. We can now write 
the transition probability amplitude that the system goes from the state of zero ‘photons’ 
to the state of zero ‘photons’. Using (4.2) and (4.5) we obtain 

(4.6) 

the expectation being now taken with respect to the processes N k ( t )  starting in 0 at 
time t = 0. 

We are interested in this expression because we are able to extract some information 
about the ground-state energy of the Hamiltonian (3.8).  In fact, it follows from the 
general theory of quantum mechanics that (for imaginary time) 

1 
t-+m t 

Eo= lim - - logP( t ) .  (4.7) 

Here we will drop the unimportant factor ( 2 ~ t ) - ’ ’ ‘  in P( t ) .  
We can extract some preliminary information from (4.6) and (4.7) very easily. Let 

us remark that every possible ‘trajectory’ of the process &( t )  gives a positive contribu- 
tion to P ( t ) ,  so that if we restrict ourselves to a certain set of ‘trajectories’ we obtain 
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a value which is lower than P (  1 ) .  In particular, let us consider the contribution of the 
‘trajectory’ in which, for every k, Nk( r)  = 0 in the interval 0 S r S t .  We can easily see 
that the probability of this event is 

(4.8) 

This result is understandable if we remember that the intensity of a jump from the 
ground state is 1vk12Wk for a single oscillator of momentum k. Taking into account 
that for the ‘trajectory’ that we consider, S,( t )  = 0, we are now able to write 

\ k  / k  

and from (4.7) we deduce that &SO. Indeed, this is still not a good result and it is 
possible to do much better using the property of convexity of the exponential function. 

Let us define 

(4.10) 

We then rewrite (4.6) in the form 

p ( t )  == E[exp(Si(t) + 8t)&,fi6(111. (4.11) 

We can obtain a first inequality taking into account that the action S i ( f )  defined in 
(4.5) is the sum of a positive part S ’ ( t )  and a negative part S 0 ( t ) :  

(4.12) 

From equation (4.11) follows 

P(t)zE[exp(G,(t)+ 8t)S6,rS,c1,]= P’(t) .  (4.13) 

This simplification of the action is not really necessary but it does not worsen the 
bound of the energy we will calculate. 

Now let us assume that the sums extend over k as well as - k  so that for every 
oscillator of momentum k we have the oscillator of momentum -k .  We can write 

and we have 

(4.14) 

(4.15) 



442 M Serva 

In fact, the intensities of the processes Nk( 1 )  and N-k( t )  are the same and the action 
S ( t ) +  8t is symmetric with respect to the inversion of momentum. This implies for 
k # *k’: 

(4.16) 

and from this it is easy to obtain (4.15). It is clear now why we had to spread the 
action So( t )  into S(  t )  and S‘( t ) .  In fact, the equality (4.16) does not hold for k = *k‘. 
Now using the properties of convexity of the exponential function we are able to write 

P’( t )  z- [E[exp( S (  t )  + 8t + ( S ’ ( t ) ) ) S 6 , 1 ~ , ~ ~ , 1 =  E[exp(S(t) + 8t )s6 ,1~~(~J  (4.17) 

We have, at this point, reduced the study of a field with many complicated 
interactions to the study of a set of uncoupled pairs of oscillators, each pair being 
composed by an oscillator with momentum k and an oscillator with momentum - k  
in interaction. 

E[Nk(r)(Nk,(r)-  N-,.(r))k* k’exp(S(t)+ 8t)&i6,, ,]  = O  

In other words we reduce the problem to the study of 

Pk ( t 1 = E** [exp(2 S k  ( t 1) so, N* ( f ) so. N _ ,  ( I ,I (4.18) 

where the expectation is taken with respect to the processes N , ( t )  and N - * ( t )  and 
S k ( t )  is given by the third relation in (4.14). We can now write 

We are not able to calculate the expression (4.18) exactly but we can give some 
inequalities introducing the trial action 

S f ( t )  = - A ( k )  Nk(r)  d r  lo‘ (4.20) 

where A ( k )  is an arbitrary function of k = Ik/ which will be chosen in order to obtain 
the best estimates. We have 

[ Pk ( t 11 3 [E k [ exp (( Sk ( t ) - st ( t )) + st ( t ) ) so, N* ( I ) 1 * (4.21) 

The expectation is now taken with respect to the process Nk( t )  alone, and 

(4.22) 

where (N:( r ) )  and (Nk( r ) ) 2  are given as mean values over all the ‘trajectories’ distorted 
by the trial action and with the initial and final states being in the zero-photon 
configurations. 

The right-hand side of expression (4.21) is calculated in appendix 2 and we obtain 
from (4.7), (4.19) and (4.21) 

J!?oCL 1 v k 1 2 W i ( i k 2 - W k  -2A(k))(Wk+A(k))-2.  (4.23) 

The function A(k)  can now be chosen in order to minimise the right-hand side of 
(4.23). Such a choice should be A(  k )  = i k 2 .  Rewriting (4.23) together with inequality 
(3.15) we finally have 

k 

(4.24) 
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which is a general result. As an example of the application of (4.24) we can consider 
the case of the polaron; we have 1qkI2= 2d?a7r/k2, wk = 1 (the extra factor two is a 
consequence of the spin of the electron). With the replacement Xk + d 3 k / ( W 3  
inequality (4.24) gives Eo< (Y which is a well known estimate of the polaron theory. 

5. Conclusions 

The main practical result of this paper is the statement of inequality (4.24) where Eo 
is the ground-state energy of a system described by the general Hamiltonian (3.8). 

After the work was finished we learnt that the bound (4.24) was already found 
(see, for example, Spohn 1986) utilising standard functional methods. However we 
think that our approach is of interest because it gives a new description of quantum 
fields that can be considered as complementary to the usual one. This also means that 
our theory provides new instruments to investigate polaron theories. We think, for 
example, of the possibility of obtaining better estimates of the ground-state energies. 
This seems feasible: in fact we observe that as an intermediate step in the calculation 
of (4.24) we give a bound for the expression (4.18), which can probably be calculated 
exactly. Work in this direction is in progress. 
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Appendix 1. A derivation of equation (3.6) 

Let us consider the equation 

a 
- + ( x ,  n, t )  = - ( [ A I 2 +  n ) w 4 ( x ,  n, t ) +  n&(x, n - 1, 1 )  
a t  

+w(A12+(x,  n + l ,  t ) + f  - + i k n  + ( x ,  n, t ) .  
(8: ) 2  

(Al . l )  

We want to show that 

where the expectation is taken with respect t o  the Wiener process w ( t )  and the birth 
and death process N n ( t ) .  The expression + ( x ,  n, t )  satisfies the initial condition 

(Al.3) 4 ( x ,  n, 0) = 4o(x ,  n ) .  
We start taking the expectation (A1.2) at time t + A t  

+ ( x ,  n, t + A t ) = E  ~ O ( w , ( t + A t ) ,  N n ( t + A t ) )  exp ik N n ( r )  (A1.4) ( 



444 M Serva 

Let us state the following equalities: 

w,( t + A t )  = WO( t + A t )  + x = wo( t + A t )  - wo( A t )  + wo( A t )  + x 

= w&( t )  + wo(At)  + x  = w:( t )  + w,(Ar) 

N, , ( t+At)= ” ( 2 ,  N,,(At)) 
(A1.5) 

where w&(t) and wo(At)  are two independent Wiener variables starting in 0 at time 
t = 0 and N’( t, N , ( A t ) )  is a birth and death process with the same transition prob- 
abilities as N,,( t )  but starting in N,,(At) at time t = 0. Taking into account that dw, = dwo 
we can write 

N n ( r )  dw,(r) = [::*‘ Nn(r )  dw,(r) + lo*r N n ( r )  dw.x(r) lor+Ar 
=lo‘ N,,(r+At) dwo(r+At)+ N,,(r)  dwo(r) (Al.6) loAZ 
= lor loAr N’(r ,  N,,(At)) dw&(r)+ N,, (r )  dwo(r). 

The second integral of the last line is equal to nwo(At)  up to terms of order o(At). 

with respect to this variable we obtain 
Expanding (A1.4) with respect to the ‘small’ wo(At)  and taking the expectation 

4(x, n, t + A t )  l+i -+ikn A t  E 4 0 ( w : ( f ) ,  N ’ (q  N,,(At))) [ t x  )* 3 [ 
(A1.7) 

Taking into account that 

and taking the expectation with respect to N,,(At) we finally have 

A r - ( / A ~ * + n ) o h r ] 4 ( ~ ,  n, t )  

+ I A ~ * o ~ ( x ,  n + 1, t ) A t  + n w 4 ( ~ ,  n - 1, t ) A t  +o(At). 

In the limit A r + O  (A l . l )  follows. 

(A1.9) 

Appendix 2. Calculation of expectation (4.21) 

In order to calculate the right-hand side of (4.21) we will solve the equation 

a 
-+(n, t )=--w(n+(TI*)+(n,  t ) + w l T / * + ( n + i ,  t)+nw+(n-l,  t ) - A n + ( n ,  t )  
at  

satisfied by 

(A2.1) 

(A2.2) 
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First we perform the transformation 

For the new function we have the equation 

(A2.4) 

This is now a backward Kolmogorov equation for a birth and death process with 
intensities ( w  + A ) n  and I 7 l 2 w 2 / (  w + A )  for absorption and  emission respectively. Note 
that 

(A2.5) 

where the transition probability p ’ ( m ,  t ;  n, 0) is given by (2.7) once we replace w by 
w + A  and h’by 1 7 1 * w / ( w + A ) .  

Because of (A2.3) we have 

so the transition probability amplitude connected with squation (A2.1) is 

(A2.7) 

We have now the ingredients to calculate the right-hand side of (4.21). We define 
p i ( m ,  t ;  n, 0) taking the expression (A2.7) and substituting U, A, 7) with w k ,  A (k ) ,  v k .  
It turns out that 

(A2.8) 

In the same way we obtain 

We are now able to calculate the expectation (4.21). In fact, taking into account that 

we can write 

(A2.10) 

(A2.11) 
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